### **International lecture of Spintronics**

Organized by Graduate Program in Spintronics (GP-Spin) and ERATO Spin Quantum Rectification (ERATO-SQR)

# "Electrons, spins, magnons and surfaces"

### SPEAKER: Professor Dr. Ricardo Ibarra

Institute of Nanoscience of Aragón Laboratory of Advanced Microscopies Condensed Mater Physics Department, **University of Zaragoza (Spain)** 

## June 14 (Tue) 2016 13:30 ~14:30

Venue: TOKYO ELECTRON House of Creativity 3F, Lecture Theater, Katahira Campus







Contact

ERATO-SQR HQ sqr-erato@wpi-aimr.tohoku.ac.jp Phone: 022-217-6238

Presentation will be conducted in English. Registration not required.

#### "Electrons, spins, magnons and surfaces"

#### M. R. Ibarra

Institute of Nanoscience of Aragón Laboratory of Advanced Microscopies Condensed Mater Physics Department **University of Zaragoza (Spain)** 

In this talk, I report relevant physical phenomena in the field of spintronics; charge and spin, constitute attributes of electrons that mediate new discovering in condensed matter physics. Two specific ingredients as a strong spin-orbit coupling and the importance of the interfaces, give rise to a variety of physical phenomena. In this talk, I will concentrate in two main subjects: On one part, the role of the Non-Magnetic metal/Ferromagnet interfaces, that give rise to a strong enhancement of the spin Seebeck effect in Fe<sub>3</sub>O<sub>4</sub>/Pt multilayer due to the magnon spin currents conversion in electron spin currents and vice versa through the heterostructure [1]. On the other part, the relevance of the surface states in Bi and Bi based compounds. Thin films of Bi provide a nice scenario for the observation of WAL effect in magnetotransport properties [2]. Time reversal symmetry (TRS) protection of surface states (SS) gives rise to the absence of backscattering in topological insulator (TI) as Bi<sub>2</sub>Te<sub>3</sub>, giving rise to spin-polarized and dissipation-less charge currents. The presence of magnetic adatoms, as Co, at the surface of a TI, can destroy the TR symmetry; this is the case of  $Bi_2Te_3$ . However, we have found that in  $Bi_2Te_2Se$ , the surface chemical inhomogeneity (Te/Se) preserves the TRS of the topological SS [3].

[1] "Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers" R. Ramos et al. Phys. Rev. B Rapid Comm 92, 220407(R) (2015) [2] "Role of the surface states in the magnetotransport properties of ultrathin bismuth films"

N. Marcano et al. Phys Rev. B 82, 125326 (2010). "Quantitative analysis of the weak antilocalization effect in ultrathin bismuth films" S. Sangiao et al. EPL, 95 (2011) 37002 [3] "Time reversal symmetry protected by chemical disorder in the surface of topological

insulator" M.C. Martinez-Velarte et al. under review (2016)